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A Comparison of Item- and Testlet-Level Scoring 

on Scale Stability in the Presence of Test Speededness

Abstract

The present study was designed to examine the impact of test speededness on scale

stability for a special class of items known as testlets.  Previous work has demonstrated that

speededness does have a negative effect on scale stability using dichotomously scored items

(Wollack, Cohen & Wells, in press).  This study extends the work of Wollack et al. to tests

comprised of testlets.  Results indicated that calibrating testlets using only nonspeeded

examinees produced a more unidimensional scale with fewer drifting items and a more stable

mean scaled score than was found using the total sample.  The inclusion of speeded examinees

was found to mask evidence of local item dependencies.

Index Terms: Partial credit model, item response theory, testlets, scale stability, item parameter

drift
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A Comparison of Item- and Testlet-Level Scoring 

on Scale Stability in the Presence of Test Speededness

Speededness effects arise when examinees modify their response strategies due to time

limits for a test(Evans & Reilly, 1972).  To the extent that examinees do not have sufficient time

to complete a test, speededness effects will add an unwanted component to the construct being

measured (Lord & Novick, 1968).  This may result in poor estimation of ability for speeded

examinees and poor estimation of item parameters, particularly for those items located at the end

of the test (Douglas, Kim, Habing, & Gao, 1998; Oshima, 1994).  Items at the end of speeded

tests often appear harder than they would be on an unspeeded test.  This occurs, because

examinees often hurry through or even fail to respond to items at the end of the test (Bejar, 1985;

Bolt, Cohen, & Wollack, 2002; Oshima, 1994).  Bolt et al. (2002) used a mixture Rasch model

(MRM; Rost, 1990) to classify examinees into latent speeded or nonspeeded groups, based upon

the difference in performance on items at the beginning and end of speeded tests.  Parameter

estimates for end-of-test items using only responses from the nonspeeded group were found to be

very similar to estimates for those same items when they were administered in nonspeeded

locations on a different form of the test.  

Wollack, Cohen, and Wells (in press) applied the Bolt et al. (2002) method to investigate

the impact of speededness on scale stability.  Eleven years worth of data from a college-level

English Placement Test were analyzed.  Items at the end of the test were found to be speeded. 

When these same items were moved to locations earlier in the test, their difficulties decreased. 

Furthermore, calibrating items using only nonspeeded examinees produced a much more stable

and unidimensional score scale than was produced by including all examinees in the calibration.  
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This study extends the results of Wollack et al. (in press) to the case in which inter-item

dependencies make testlet scoring appropriate.  Wollack et al. scored all items with a 

dichotomous Rasch model, even though the reading comprehension section consisted of a

number of reading passages each with 4 to 8 associated questions.  It has been suggested that

items of this type are better treated as testlets to control for the local dependency that typically

exists among items for a common passage (Thissen, Steinberg, & Mooney, 1989; Wainer &

Kiely, 1987; Wainer & Lewis, 1990; Yen, 1993).  

In this paper, data from a college-level test of reading were analyzed under two separate

models:  the dichotomous Rasch model and the polytomous partial credit model  (PCM; Masters,

1982).  The PCM is a natural extension of the Rasch model that was used by Bolt et al. (2002)

and Wollack et al. (in press).  Use of polytomous models for testlets has been suggested as one

means of handling tests composed of the testlets (Lee, Kolen, Frisbie, & Ankenmann, 2001;

Wainer, Sireci, & Thissen, 1991).  This paper compares the effects of using the PCM and the

Rasch model on (a) the identification of speeded and nonspeeded examinees, (b) score scale

stability, and (c) test unidimensionality for a reading comprehension test with sets of locally

dependent items. 

Modeling Test Speededness

Mixture Rasch Model Method

Bolt et al. (2002) and Wollack et al (in press) have modeled test speededness using a

MRM (Rost, 1990) in which examinees are assumed to belong to one of two distinct classes, a

speeded or nonspeeded class.  Performance of individuals in the speeded class is assumed to be

affected by time constraints, whereas that of examinees in the nonspeeded class is assumed to be
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unaffected.  The Rasch model is assumed to hold within each class; however, the item

parameters are allowed to differ in the speeded and nonspeeded classes.  In particular,

performance on items early in the test is not thought to be hindered by any test speededness

concerns that might arise later in the test.  Therefore, in the Bolt et al. model of test speededness,

item parameters are assumed to be equal in the speeded and nonspeeded groups for beginning-of-

test items.  In contrast, the end-of-test items are modeled as more difficult for the examinees in

the speeded group.  This pattern is modeled by constraining the item difficulty parameters for a

set of items early in a test to be equal in the speeded and nonspeeded classes and constraining the

difficulty parameters for a set of end-of-test items to be higher (i.e., more difficult) in the speeded

class than in the nonspeeded class.

The MRM applied to test speededness is given by
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where

• i indexes the item, i = 1, . . . , n,

• j indexes the examinees, j = 1, . . . , N,

• g indexes the latent class, g = 1, 2,

• 2jg is the latent ability of examinee j in class g,

• big is the Rasch item difficulty parameter for item i in class g, and

• Pi (U = 1|g, 2jg) is the probability of a correct response to item i by examinee j in class g

with ability 2jg.  
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Mixture Partial Credit Model Method

When data are polytomous, such as the case on a test comprised of testlets, a mixture form

of the partial credit model (Masters, 1982) may be more appropriate to use to identify classes of

speeded and nonspeeded examinees in much the same way as the MRM was used.  The mixture

partial credit model (MPCM) is given by

( )
( )[ ]

( )[ ]
P U k|gi = =

−

−

=

==

∑

∑∑
,

exp

exp
,θ

θ

θ

νν

νν

jg

jg i g
k

jg i g
c

c

m

b

bi

0

00

where

• k indexes the item category, k = 1, . . . , mi, 

• bi<g is the PCM item step parameter for category < of item i in class g,

• Pi (U = k|g, 2jg) is the probability of examinee j in class g with ability 2jg receiving a score

of k on item i.

All other values are as previously defined.  By definition, bi0g equals 0 for both latent classes. 

Furthermore, item step parameters may be decomposed into an overall item difficulty, equal to

the average of the k step parameters for item i, and a category-specific mean deviation:

bikg = $ikg + *ig ,

where

δ
νν
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k
b

k
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is the item’s location on the ability scale and $ikg = bikg - *ig is the location of step k relative to the

location of item i.  It should also be noted that G< $i<g = 0.  In essence, this parameterization

mirrors that of Andrich’s rating scale model (1978a, 1978b, 1979), except that the $s are allowed

to differ for each item.  

To identify latent speeded and nonspeeded classes of examinees, the model is constrained so

that bik1 = bik2 for items early in the test where speededness is not expected to be a factor.  For

items at the end of the test where speeded examinees are likely to fare less well than nonspeeded

examinees, the model is constrained so that *i1 > *i2.  This constraint assures that the item is

more difficult in class 1 (the speeded class) than in class 2 (the nonspeeded class).  The $ikg,

however, are freely estimated in the two latent classes for end-of-test items, meaning that the

relative category locations may differ across classes.  

Parameter Estimation

Parameters in the MRM and MPCM were estimated using a Markov chain Monte Carlo 

algorithm (MCMC; Gilks, Richardson, & Spiegelhalter, 1996; Patz & Junker, 1999a, 1999b) as

implemented in the computer program WinBugs (Spiegelhalter, Thomas, & Best, 2000).  Under

MCMC, model parameters are estimated by repeatedly sampling each parameter from its

posterior distribution, conditional on the data and the most recent estimates of all other

parameters.  After an initial burn-in period, it is possible to create a Markov chain such that the

sampled values are drawn from the parameter’s full conditional distribution.  The value of each

parameter is estimated as the mean of the Markov chain.  

Sampling from posterior distributions requires the specification of prior distributions for all

MCMC parameters.  Bolt et al. (2002) and Wollack et al. (in press) provided prior distributions
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for the MRM that allowed the Markov chains to converge to the parameters’ full conditional

distributions.  These specifications are given in Table 1, along with the prior distributions used

for the MPCM.  In Table 1, cj = (1, 2) represents the class membership parameter for examinee j,

and the Bg (g = 1, 2) are the mixing proportions, indicating the percentage of examinees in class

g.  All other parameters are as previously specified.  Note that the only difference in priors

between the MRM and MPCM involves the item difficulty parameters, big for the MRM and *ig

and $ikg for the MPCM.

____________________________

Insert Table 1 About Here
____________________________

Research Design

Data

This study re-analyzed a four-year subset of the English Reading Comprehension Test

(RCT) data used by Wollack et al. (in press).   The RCT is a subtest on an 80-minute English

Placement Test (EPT) which is administered annually to 15,000-18,000 students at a large

midwestern university system.  The test is used by advisors to help place entering undergraduate

students into the initial composition sequence.  The RCT is always the last section of the test.  A

different form of the test is published each year, though the test is designed to have some items

overlap across years.  For the four years used in this study, each form of the RCT had 10 reading

passages with 52 or 53 operational (i.e., scored) items.  The RCT subtest comprises

approximately half the items on the EPT.  The alpha coefficients for the operational portion of

the RCT over that 4-year period ranged from .88 to .90.
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In addition to the 10 operational reading passages, each RCT had three pilot forms, each

containing one pilot reading passage and its associated items.  The RCT pilot items are always

located as the eleventh passage at the very end of the test, and so are the most susceptible to

speededness effects.  Poorly estimating item parameters on these pilot passages becomes a

problem in subsequent years.  Because the very end of the test is reserved for pilot passages and

their associated items, any pilot passages that work well (or appear to work well) and are

included on a future form of the RCT. These passages necessarily get moved out of the eleventh

passage position reserved for pilot testing and into a less speeded portion of the test.   For

criterion-referenced tests such as a college placement test, this may be particularly problematic,

since estimates of item difficulty which are systematically too high (i.e., too difficult) will result

in a greater-than-expected number of students scoring above the criterion (Wollack et al., in

press).  

The particular four-year segment of data analyzed here, 1993-1996, is particularly well-

suited for tracking the stability of items and score scales over time.  The operational items in

1994, 1995, and 1996 consisted only of items that were administered, either operationally or as

pilots, on the form from the previous year.  Typically, the operational passages and their

associated items remained in the same locations.  The pattern of passage locations is given in

Table 2.  In 1994, seven passages (1, 2, 5, 7, 8, 9, and 10) were also administered in 1993 in

those same locations.  The third, fourth, and sixth passages in 1994 were all piloted in 1993 (and

were all administered as the eleventh passage).  In 1995, eight passages (1, 2, 3, 5, 6, 7, 8, and

10) were administered the previous year, 1994, in those same locations.   Passages  4 and 9 on

the 1995 test were both piloted in 1994.  In 1996, eight passages (1, 2, 3, 4, 6, 7, 8, and 9) were
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administered in 1995, though the locations changed for all but passage 2.  Five of the seven

passages that changed locations were in very nearly the same location, each appearing one

passage later in 1996.  Passages 1 and 3 in 1996 were located as passages 9 and 10 in 1995.  The

two 1996 passages which were not operational in 1995 (passages 5 and 10) were both 1995

pilots. 

____________________________

Insert Table 2 About Here
____________________________

Identifying Nonspeeded Classes

For each form of the RCT between 1993 and 1996, both the MRM and the MPCM method

described earlier were implemented to identify speeded and nonspeeded classes of examinees. 

We selected the PCM because it enabled us to implement a mixture model based on the PCM,

which is a natural extension of the MRM used by Bolt et al. (2002).  

To distinguish the speeded and nonspeeded classes, it is necessary to place certain

constraints on the data.  For the dichotomous MRM analysis, the Rasch difficulties, big,

associated with the first three reading passages (either 18 or 19 items) were constrained to be

equal for both classes, while the difficulties for the items associated with the pilot passage

(passage 11) were constrained to be larger (i.e., harder) for class 1 than for class 2.  Therefore,

class 1 defines the speeded class and class 2 defines the nonspeeded class.  These were the same

constraints imposed by Wollack et al. (in press).

The polytomous MPCM analysis was similar to that of the MRM.  For the MPCM analysis,

the item step parameters, bikg, were constrained to be equal in the two classes for the testlets

associated with the first three reading passages.  To distinguish the classes, difficulty parameters,
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*ig, for the testlet associated with the pilot passage, were constrained to be larger for class 1 than

for class 2.  

Each form of the test was analyzed separately using both the MRM and MPCM.  Although

there were three pilot forms of the RCT each year, in 1994 and 1995 only two of the pilot

passages became operational the following year.  Speededness analyses were performed only for

those forms that produced operational pilot items.  Because 1997 data were not analyzed in this

study, none of the1996 pilot passages were tracked.  However, speeded and nonspeeded classes

were estimated for one 1996 pilot form to allow for estimation of the scale stability, drift, and

unidimensionality in the total group and in the nonspeeded class.

For each form of each year’s test, a random sample of at least 1,500 examinees taking that

form was analyzed for purposes of estimating model parameters.   Class membership was

estimated by fixing these parameter estimates and applying them to all examinees taking that

particular form.  This two-step process for each dataset has been shown to be an effective and

efficient way to estimate class membership for all examinees (Cohen, Wollack, Bolt, & Mroch,

2002).  All MCMC chains were run to a minimum of 6,500 iterations, with the first 500

comprising the burn-in and the mean of the remaining iterations taken as the parameter’s

estimate. 

The prior distributions listed in Table 1 were used for the MCMC analyses.  Random

computer-generated starting values were used for all model parameters.  An example of the

WinBUGS syntax for performing the MPCM is shown in Appendix A.
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Item Parameter Estimation

For each year, two sets of marginal maximum likelihood (Bock & Aitkin, 1981) estimates of

Rasch difficulties and PCM item step parameters were obtained using MULTILOG (Thissen,

1991):  One set of estimates was obtained using only those examinees who were classified as

nonspeeded and one set was obtained using all examinees, regardless of class membership. 

Although the mixture analysis described above for identifying speeded and nonspeeded

examinees involved only a subset of items and testlets from the RCT, item parameters for all

items and testlets were estimated for each form using MULTILOG.  The number of EM cycles

was set to 1,000 for all runs.  A total of 47 quadrature points ranging from -4.6 to 4.6 in

increments of .2 were used to improve testlet parameter estimation in the PCM. 

Detection of Item Parameter Drift and Equating

Partial Credit Model. Drift analyses were conducted first for the 93-94 years, then for the 93-

94-95 years, and finally for the 93-94-95-96 years.  This was done to represent the way that drift

analyses are normally conducted within a testing program.  That is, data are available initially

only for the first two years, then for the first three years, and so on.  In this study, PCM item step

parameter estimates from each year were tested for parameter drift (Bock, Muraki, &

Pfeiffenberger, 1988; Goldstein, 1983) from the base 1993 scale by concurrently calibrating all

testlets and comparing parameter estimates from a compact model with estimates from an

augmented model.  The compact model imposed a series of equality constraints on common

testlets.  The augmented model relaxed those constraints to estimate the parameters for each

testlet, one at a time.  
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The specifics of this analysis are as follows.  The 93-94 drift analysis included data from 25

testlets:  10 operational testlets from 1993, 3 pilot testlets from 1993, 10 operational testlets from

1994, and 2 pilot testlets from 1994.  As can be seen in Table 2, 10 testlets were common to 1993

and 1994.  In the compact model, item step parameters for the 10 common testlets were

constrained to be equal in the two years.  In each of the 10 augmented models, the compact

model was relaxed to let the PCM parameters be freely estimated for one of the common testlets.  

  The 93-94-95 drift analysis included data from 37 testlets:  10 operational testlets from

1995, 2 pilot testlets from 1995, and all 25 testlets from the 93-94 analysis.  The 1995 compact

model placed equality constraints on parameters for the 10 testlets common between 1994 and

1995.  Also, equality constraints were imposed on all 93-94 testlets that were free of item

parameter drift.  Similarly, the 93-94-95-96 analysis included data from all 48 testlets:  10

operational testlets from 1996, 1 pilot testlet from 1996, and all 37 testlets from the 93-94-95

analysis.  The 1996 compact model imposed equality constraints on all testlets common to 1995

and 1996, and between any pair of testlets found to be free of drift in either the 93-94 or 93-94-95

analysis.  All other parameters were freely estimated.  Each augmented model in the 1995 and

1996 analyses allowed one common testlet to be freely estimated. 

The PCM drift analysis was performed twice, once using all examinees and once using only

those examinees classified as nonspeeded.   Constraints based on patterns of model parameter

drift were imposed only within the group of examinees (nonspeeded or total) for which that

pattern held.

Following the drift analysis, model step parameter estimates were equated to the 1993 scale. 

This was also done by concurrent calibration.  For the 1994 estimation, parameters for all 1993
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items were fixed at their scale values and equality constraints were imposed on all drift-free

items.  All drifting or 1994 pilot items were freely estimated.  For the drift analyses including the

95 and 96 testing years, parameters for all previously estimated testlets were fixed at their scale

values, equality constraints were imposed on all drift-free items, and all others were freely

estimated.

Drift Criterion.  Although our original intention was to test for item step parameter drift

using the likelihood ratio test for differential item functioning (DIF;  Kim, Cohen, DiStefano, and

Kim, 1998; Thissen, Steinberg, and Gerrard, 1986; Thissen, Steinberg, & Wainer, 1988, 1993)

with " = .05, because of the large number of examinees, this criterion proved to be neither

practical nor feasible.  Using an " = .05 (or even an " = .10 criterion) would have resulted in no

drift-free testlets between 1993 and 1994 for the total group.  Linking back to the 1993 scale

requires having at least one common drift-free testlet.  Therefore, a different criterion for

inferring drift needed to be established.  To address this concern, for each common testlet, we

plotted testlet information curves (TIC) based on the sets of estimates from the augmented

models, and calculated the average absolute difference (AAD) between the curves, as follows:

,

( ) ( )
AAD

I I

T

1 t 2 t
t 1

T

=

−
=

∑ θ θ

where I1(2t) and I2(2t) are the amount of testlet information at 2t (t = 1, . . . , T) for the two years.

For this study, | I1(2t) - I2(2t) | was observed at 91 evenly spaced 2-values ranging from -4.5 to

4.5.  Based on visual inspection for dozens of testlets, a decision was made to regard AAD values

less than or equal to .05 as negligible, and to treat all corresponding testlets as drift-free.  To
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illustrate this measure of similarity in item parameter estimates, plots of TICs are presented in

Figure 1 for 10 sets of reference and focal groups and their corresponding AAD values.  The

plots in the left column all correspond to information curves that produced AAD values less than

or equal to .05.  The second column shows curves for which AAD was greater than .05.

____________________________

Insert Figure 1 About Here
____________________________

Rasch Model.  Similar drift and linking procedures to those described above were also

performed on the individual dichotomous Rasch items using the MRM nonspeeded and total

groups.  The drift analyses included a total of 138 items in 93-94, 203 items in 93-94-95, and 262

items in 93-94-95-96.  In each of these three analyses, there were 53 items common to the last

two years.  As in the PCM analysis, equality constraints were also imposed between any pair of

items which had previously been found to be drift free.

For the Rasch model analysis, it was not appropriate to use a .05 information criterion for

identifying item parameter drift.  Because Rasch items have only two categories and offer a

maximum information of .25 (at 2 = b), average differences of .05 represent substantial

deviations.  Instead, items were tested for item parameter drift from the 1993 scale using the

likelihood ratio test (Thissen, Steinberg, and Gerrard, 1986; Thissen, Steinberg, & Wainer, 1988,

1993) with concurrent calibration.  Items for which -2 times the log likelihood was greater than

3.84 (i.e., P2(1) at " = .05) were identified as having drifted.  

Creating Score Scales

As mentioned previously, the score scale was defined using operational 1993 data.  For

subsequent years, the estimation of 2 was based on the most recent parameter estimates for each
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operational testlet or item.  Note that these values differed from the 1993 scale values for

testlets/items whose parameter estimates were found to have drifted from the base scale values

following its most recent administration.

Separate score scales were computed for items calibrated under the PCM and the Rasch

model using parameter estimates either for all examinees or only for examinees in the

nonspeeded class.  Furthermore, within each of the four model (PCM vs. Rasch) × sample (total

vs. nonspeeded) combinations, two separate score scales were created–one representing pre-

equating and one representing post-equating.  In pre-equating, the score scale is determined

before the test is administered using data from previous administrations.  Pre-equating is useful

when it is important for examinees to know their scores shortly after testing, or when the testing

window is sufficiently long that it is impractical for examinees to wait for the window to end

before receiving scores.  Examples of testing scenarios that often require pre-equating include

computer adaptive testing, placement testing, and diagnostic testing (Wollack et al., in press).  In

contrast,  for post-equating, the score scale is determined after all data are collected.  When

feasible, post-equating is preferable because it allows for re-estimation of any testlet or item

parameters that may no longer be functioning the same as they once were.  

 A testing program with the ability to post-equate would appear to be less susceptible to

speededness concerns than a program that relies on pre-equating (Wollack et al., in press).  With

post-equating, any items or testlets whose parameters have drifted would be re-estimated prior to

publishing the score scale.  In the case of speededness, any end-of-test items (such as the pilots)

that become much easier as they get moved into earlier sections of the test will have their

parameters re-estimated.  In pre-equating, however, the scale is published using estimates of
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item/testlet difficulty.  When speededness is present, these estimates may be inappropriately high,

given the new location of the item.  This could result in scores that are systematically higher than

expected.

Interestingly, Wollack et al. (in press) did not find the anticipated results with regard to pre-

and post-equating.  In particular, Wollack et al. found only a very slight tendency for root mean

square errors to be smaller in post-equating situations.  However, the post-equating biases were,

in general, substantially larger than those for pre-equating.

RCT scores are reported to examinees on a metric from 150 to 850 with a mean of 500 and a

standard deviation of 100.  Therefore, for purposes of this study, linear transformation

coefficients A and K were found such that

E(A + K) = 500 and E[ (A + K) ! 500 ]2 = 1002$θ j
$θ j

for the 1993 operational form of the test.  Four separate sets of A and K coefficients were found,

one each for the four model × sample combinations.  The 1993 A and K coefficients from these

four groups were used to transform RCT scores for 1994 - 1996 onto the 1993 score-reporting$θ

metric.  

Evaluative Measures

Assessing Local Item Dependence.  To provide some insight into the extent to which testlet

scoring was necessary for the RCT, and the degree to which we might expect to see differences

between PCM and Rasch scoring, Yen’s Q3 (1984) statistic was used to measure the amount of

local item dependence (LID) among all pairs of items.  Q3 is computed as the correlation of item

residuals, after fitting the data with an IRT model.  In theory, the Fisher r-to-z transformation of
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Yen’s Q3 is distributed approximately normal (0, 1/(N - 3)).  In practice, however, under the null

hypothesis of local independence, Q3 is known to have a negative bias.  This is because the

correlations between a pair of item residuals are contaminated by the inclusion of those items in

estimating 2.  This bias can be shown to be approximately -1/(n - 1) (Yen, 1993).  It is clearly

larger when n is smaller, e.g., such as when testlets are the unit of analysis as compared to

individual dichotomous items 

It was expected that Q3 statistics based on Rasch model item and person parameter estimates

would be slightly negative (on the order of -1/(n - 1)) for between-passage items, but would be

positive (suggesting LID) for within-passage items.  Furthermore, it was expected that Q3

statistics between testlets based on PCM item step and person parameters would be slightly

negative (again approximately equal to -1/(n - 1)).  

Evaluating Scale Stability. 

Three different methods were used to evaluate the stability of the score scales under the

PCM and Rasch model for the nonspeeded examinees and all examinees.  First, each form of the

RCT was subjected to a principal components analysis (PCA), first using (a) only the nonspeeded

examinees and then (b) all examinees.  Two PCAs were conducted for each group of examinees,

one based on all individual items and one based on testlet scores.  For purposes of this analysis,

only operational items were used.  Therefore, the 1993 item-level PCA included 52 items,

whereas the testlet-level PCA included 10 testlets.  In 1994, 1995, and 1996, item- and testlet-

level PCAs included 53 items and 10 testlets, respectively.  

All PCAs were conducted using correlations that corrected item scores for continuity.  That

is, item-level PCAs were performed on tetrachoric correlations (as estimated by the computer
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program TESTFACT (Wilson, Wood, & Gibbons, 1991)) and testlet-level PCAs were performed

on polychoric correlations (as estimated by the computer program LISREL (Jöreskog, K. G. &

Sörbom, D. (2002)).  Matrices of these correlations were then input into SPSS (SPSS Inc., 2002)

to complete the PCA.  

The ratio of the first to second eigenvalue provides a measure of the extent to which the data

are unidimensional (Wollack, et al., in press).  This index was computed from the item- and

testlet-level PCAs for both nonspeeded examinees and the total sample.  

As a second measure of stability, we examined the mean and standard deviation of each

form of the RCT for both groups of examinees, both types of IRT models, and both types of

equating.  In a stable scale, one would expect the mean and standard deviation to remain close to

the 1993 values of 500 and 100, respectively.  Two stability measures, the root mean square

difference (RMSD) and bias, were calculated for each group on both the means and standard

deviations, to quantify the amount of scale drift from the 1993 base values. 

Finally, we compared the number of drifting items for each form of the RCT, for both

groups of examinees and both models.  In many regards, this provides the best measure of scale

stability.  Any differences in examinee ability level over time will result in changes in the mean

scale value, but because drift analyses involve conditioning on , item parameter estimates can$θ

remain stable even if the overall ability level of examinees changes over time.  Observing a small

percentage of drifting items, therefore, provides evidence of scale stability. It was expected that

the estimates based on responses for the total group would result in more drifting items than for

those based on the nonspeeded group.  Furthermore, it was expected that fewer items would drift

when modeled with the PCM than with the Rasch model.
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Results

Bolt et al. (2002) and Wollack et al. (in press), working with MRMs, and Wollack, Bolt,

Cohen, and Lee (2002), working with the nominal response model (Bock, 1972), found that the 

MCMC chains converged very quickly to their stationary distributions (typically within the first

50 or 60 iterations).  Figure 2 shows the sampling histories of 6,500 iterations of the Markov

chains for several model parameters associated with one form of the 1993 RCT.  Histories are

provided for the latent class ability means, :1 and :2, latent class mixing proportions, B1 and B2,

latent class item difficulties, *1 and *2, for the pilot testlet, and the latent class step deviation

parameters, $1 and $2 for the pilot testlet.  From Figure 2, one can see that, in general, model

parameters here converged to their stationary distributions relatively quickly.  However, there

was a good deal of volatility in the estimates of the standardized step parameters for class 1 (the

speeded class).

____________________________

Insert Figure 2 About Here
____________________________

Chains were run for a minimum of 6,500 iterations.  The first 500 iterations were discarded

as the burn-in.  Average values across the remainder of the Markov chain were taken as the

estimates for each parameter.  Although estimates of the :s, *s and $s varied considerably by

form and by item, the mixing proportions, B, were fairly stable, ranging between .2 and .3 for all

datasets.  

Wollack et al. (in press) emphasized the importance of checking the solution from a mixture

model analysis to see that it makes sense.  The speededness algorithm used here forces a two-

class solution, regardless of the actual latent structure in the data.  Because the mixture models
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analyze only a subset of test questions (items associated with the first three passages and the last

passage), Wollack et al. suggested comparing the characteristics of items used in the mixture

analysis with those not used in the mixture analysis.  In particular, they recommended examining

the proportion correct scores for all items for examinees in both the speeded and nonspeeded

classes, to see if the structure is consistent with the presence of test speededness.

Table 3 presents the proportion correct and average testlet score data for a form of the 1993

test for three categories of items/testlets:  (a) those for which equality constraints were imposed

in the mixture analysis, (b) those which were not included in the mixture analysis, and (c) those

for which ordinal constraints were imposed in the mixture analysis.  From Table 3, one can see

that the items/testlets in category (a) have very similar statistics across the two classes.  Also, the

statistics associated with category (c) reveal that the speeded group performed dramatically less

well at the end of the test.  These results were anticipated, due to the nature of the mixture

constraints.  The statistics for category (b), however, are interesting.  These items were excluded

from the mixture analysis for two reasons.  First, they were administered late enough in the test

that we were not confident that equality constraints were appropriate.  Second, they were not

administered late enough in the test that we were comfortable imposing equality constraints. 

However, even though these items were not included in the analysis, it is still likely that

speededness becomes an increasing concern throughout the test.  Therefore, we expect to see the

difference in difficulty between the nonspeeded and speeded classes gradually increase across

this set of items.  This is precisely the pattern that was observed in this study for both the MRM

and MPCM.  
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____________________________

Insert Table 3 About Here
____________________________

Assessment of Local Item Dependence

Yen’s (1984) Q3 statistics were computed between all pairs of items administered in 1993. 

Because each pilot form contained a different reading passage and associated items, Q3 statistics

could not be computed between pilot items from different forms.  To distinguish the separate

forms, each form is numbered with a three digit number.  The first two digits represent the testing

year (and a common set of operational items), and the third digit is used to identify the particular

pilot passage.  Q3 statistics computed between pilot items and operational items in this study

were based on 2,525 examinees for the form 934 pilots, 3,453 examinees for the form 935 pilots,

and 2,541 examinees for the form 936 pilots. Q3 statistics between operational items were based

on all 8,519 examinees completing a reading pilot form.  

This analysis resulted in Q3 statistics for 2,250 pairs of items.  To facilitate interpretation, all

Q3 statistics between items associated with the same reading passage were averaged together to

provide a measure of the average within-passage LID.  As an example, for reading passage 1,

which contained four items, Q3 statistics between item pairs 1-2, 1-3, 1-4, 2-3, 2-4, and 3-4 were

averaged to provide a within-passage 1 Q3.  Also, all Q3 statistics between items from the same

two passages were averaged together to provide a measure of the average between-passage LID. 

The four passage 1 items and the five passage 10 items, for example, produced 4 × 5 = 20 item

pairs, each of which produced a Q3 statistic.  The average across these 20 statistics provided an

average between-passage Q3 for passages 1 and 10.  
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The average within- and between-passage Q3 statistics based on Rasch model parameter

estimates are provided in Table 4.  To help interpret the structure in these data, the lower half-

matrix of average Q3 statistics is divided into five sections, labeled A, B, C, D, and E, as shown

in the legend.  The triangle labeled A contains the average between-passage Q3 statistics between

passages 1 through 9.  The triangle labeled B contains the between-passage Q3 statistics between

passage 10 and the three pilot passages, numbered 11, 12, and 13 (although all were administered

as the 11th passage on their respective forms).  The rectangle labeled C contains the between-

passage Q3 statistics between one passage from among the first nine, and one passage from

among the last four.  The main diagonal section labeled D contains the within-passage Q3

statistics for passages 1 through 9.  The main diagonal section labeled E contains the within-

passage Q3 statistics for passages 10 through 13.  The average Q3 statistics in each of the five

sections are given at the bottom.  

____________________________

Insert Table 4 About Here
____________________________

Inspection of Table 4 reveals an interesting pattern.  Q3 statistics in section A of the table

revealed a very slight negative bias, consistent with what one would expect between passages. 

Q3 statistics in section C were also negative, but noticeably larger (in absolute value).  Q3 values

in section B were all slightly-to-moderately positive, suggesting some degree of LID among

between-passage items for end-of-test passages.  Among the within-passage Q3 statistics, those in

section D were positive, but the magnitude was sufficiently small to suggest that LID may not be

a serious concern, even for items within passages.  In section E, however, Q3 statistics were very

large.  Taken collectively, this pattern is consistent with what one would expect from a speeded



Item vs. testlet scoring 24

test, because speededness can result in LID among affected items.  Here, between-passage items

early in the test showed no LID, whereas between-passage items late in the test did show some

LID.  Also, within-passage items late in the test showed a great deal of LID.  The between- and

within-passage Q3 statistics began to become substantial around passage 10, suggesting that the

last two passages (10 and the pilot 11th passage) may be speeded.  Interestingly, within-passage

items early in the test did not show much LID.  

To better examine the impact of within-passage items on LID, the Q3 analysis was repeated

using only nonspeeded examinees from the 1993 MRM analysis.  The results of this analysis are

presented in Table 5 and present a very different picture than the results from Table 4.  As

expected, removal of speeded examinees caused the Q3 statistics in sections A, B, and C to

become very similar.  Q3 values ranged from !.03 to .00, and were all very close to -1/(n - 1) = 

!.018, the expected Q3 value for locally independent items.  The results of the Q3 analysis

differed for the nonspeeded and total samples with respect to their within-passage values (i.e.,

sections D and E).  When nonspeeded examinees only were analyzed, all the values along the

main diagonal (except that for passage 1)  indicated considerable LID.  When all examinees were

used, only the end-of-test items showed LID.  The pattern in Table 5 is more consistent with our

expectations of item behavior when administering multiple testlets of related items.  Further, it

suggests that the test conforms to a pattern that is better fitted with a PCM than a Rasch model,

i.e., because of the higher LID within each testlet.  This pattern in Table 4 was obscured by the

presence of examinees for whom the test was overly speeded.  

____________________________

Insert Table 5 About Here
____________________________
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Table 6 shows the pattern of Q3 statistics obtained by using all examinees, but estimating 

expected item scores using Rasch item parameter estimates based on the nonspeeded group only. 

As one can see from Table 6, average Q3 statistics in sections A, B, and C are quite similar to

their values in Table 4. The statistics gradually increase in section C and are positive in section

B, reflecting the presence of test speededness.  As a result of using item parameter estimates

based on the nonspeeded class, however, the average Q3 statistics in sections D and E were larger

and positive, indicating that the within-passage items were not locally independent.  

____________________________

Insert Table 6 About Here
____________________________

The above analysis was also performed on testlets using the PCM to compute expected

testlet scores (i.e., testlet true scores).  Within-passage comparisons were not possible for testlets. 

Tests with 11 testlets, have an expected Q3 equal to !.10.   Looking at the off-diagonal elements,

the patterns were identical to those observed in Tables 4 to 6.  The magnitudes of Q3 statistics

were higher, but were again similar to their expected values.  As an example, in the PCM parallel

of Table 5, where only nonspeeded examinees were analyzed, average Q3 statistics in sections A,

B, and C were !.089, !.050, and !.096, respectively. 

Principal Components Analysis

The results of the PCA are given in Table 7.  The top half of Table 7 shows the eigenvalues

from a PCA on operational testlets using either all examinees or only the nonspeeded examinees

from the MPCM analyses.  The bottom half of Table 7 shows the eigenvalues from a PCA on

individual operational items using either all examinees or only the nonspeeded examinees from

the MRM analyses.  
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There was little difference between the magnitude of 81 between the total and nonspeeded

groups.  There was, however, a large difference in 82 and in the ratios of 81 to 82.  In both the

PCM and Rasch model, the nonspeeded group produced smaller values of 82 and larger

eigenvalue ratios.  This suggests that the nonspeeded group is more homogeneous than the entire

group.

Interpreting differences between item-based and testlet-based PCAs is difficult because the

number and nature of variables is so different in the two analyses.  As expected, there was a large

difference between the testlet-based and item-based PCAs with respect to the percentage of

variance explained by the first two principal components.  In the PCM analysis, where testlets

were analyzed, the first component explained, on average, nearly half the variance in scores.  In

the individual item Rasch model analyses, the first component explained only one quarter of the

variance in scores.

Score Scale Stability

Means and standard deviations across the four year period are presented in Table 8, along

with RMSD and bias statistics.  Note that in Table 8, the statistics listed for the nonspeeded

group were found by estimating item/testlet parameters using only the nonspeeded group, and

then applying these estimates to all examinees.  The most discernable pattern from Table 8 is that

the means were more stable when based on nonspeeded item/testlet parameter estimates.  In

addition, pre-equating using the total sample consistently provided the least stable RCT scores. 

Otherwise, clear patterns do not appear to be present.   There was no meaningful difference

between choice of model, nor between type of equating with respect to the stability of RCT

scores.  
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____________________________

Insert Table 8 About Here
____________________________

Even though model parameter estimates were transformed back to the original 1993 scale, 

the differences between methods, or lack thereof, still may be obscured somewhat by differences

in ability across the four years.  The expectation that means and standard deviations remain

constant across time rests in the reasonableness of the assumption that the samples are drawn

from the same population.  In fact, there was evidence that the samples here were not of equal

ability.  As an ad hoc analysis, we simultaneously calibrated all 40 operational testlets using the

PCM, placing equality constraints on all common, drift-free items for purposes of linking. 

Average 2 estimates for 1993, 1994, 1995, and 1996 samples were 0.0, 0.02, 0.11, and -0.03,

respectively.  Of course, one limitation to this method is that estimates of 2 differ depending on

the model, sample, set of linking items, and set of calibrating items used.  Unfortunately, there is

no empirical way to judge which set of 2 estimates is best.  As an example, repeating the analysis

above using only the nonspeeded examinees (and linking with the corresponding set of drift-free

testlets), average values of  were 0.0, 0.01, 0.05, and -0.17 for years 1993 - 1996, respectively. $θ

Although the two sets of ability estimates differ somewhat, both show that the four years are not

uniform with respect to ability.  

Item/Testlet Parameter Drift

Results of the drift analysis are shown in Table 9, where items are classified into one of four

categories, based on the magnitude of drift.  In the upper half of the table, for which the PCM

was applied, estimates of testlet parameters for two adjoining years are classified as either
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similar, moderately similar, or dissimilar based on the difference between TIFs for the two years

in an augmented model.  To be classified as similar, TIFs had to differ by an average of less than

or equal to .05 across all 2 values.  Note that this was the criterion for identifying drift-free items

for the PCM.  Differences between .05 and .10 were classified as moderately similar, and

differences greater than .10 were classified as dissimilar.  Also, the number of items which were

drift-free at " = .05 according to the likelihood ratio test are recorded in the LR column.

____________________________

Insert Table 9 About Here
____________________________

Results of the Rasch drift analysis are presented in the bottom half of Table 9.  Item

parameter estimates were categorized as similar if they differed by no more than .15, moderately

similar if they differed by .15 to .30, and dissimilar if they differed by more than .30.  Again, the

number of items yielding nonsignificant likelihood ratio tests are recorded in the LR column.  For

the Rasch analysis, the likelihood ratio test was used to identify drifting and nondrifting items.

Item parameter estimates were far more stable over time within the nonspeeded group than

within the total group.  As an example, within the nonspeeded group, an average of 6 testlets and

27 items per year were drift-free for the PCM and Rasch model, respectively, whereas within the

total group, an average of 2.7 testlets and 10.3 items were drift free.  Furthermore, for the Rasch

analysis, calibrating on the basis of the nonspeeded group resulted in half the number of

dissimilar items (an average of 8) when compared to the total group (an average of 15.7).  A

similar pattern for the PCM was not observed.  

Comparisons across model type are difficult because the types of items and the criteria for

classification were different.  As mentioned previously, using the likelihood ratio criterion
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proved unworkable for the PCM, because for the total group in 1993, zero drift-free testlets were

identified.  However, using the criteria developed for this study, there was little difference

between the PCM and Rasch model with respect to item stability.  An average of 60% of the

testlets (and an average of 31.3 score points per year) in the PCM remained stable for the

nonspeeded group compared to 51% of the items (and an average of 27 score points) in the Rasch

model.  

Comparison of Classifications

As a final comparison, we examined the similarity of proportions of examinees classified 

into speeded or nonspeeded groups by each of the two models for each of the four years.  These

data are provided in Table 10.  Across the four years, the percentage of students classified in the

same groups varied from 93.8% (1996) - 96.2% (1995).  Overall, 94.9% of the students received

the same classification.  The models did not differ meaningfully with respect to the proportion of

examinees classified as speeded.  A total of 2.9% of the examinees were classified as speeded

under the MPCM, but nonspeeded under the MRM, compared to 2.6% of the examinees who

were classified as speeded under the MRM, but nonspeeded under the MPCM.  Overall, roughly

22% of the examinees were classified as speeded (with the remaining 78% being classified as

nonspeeded), regardless of model. 

____________________________

Insert Table 10 About Here
____________________________

The correlations between the latent group membership variables ranged from .87 (1993) -

.95 (1994), again indicating that the classifications under the two models were very similar.  
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Discussion

Wollack et al. (in press) demonstrated that calibrating a test using only nonspeeded

examinees from a MRM results in a more unidimensional and stable scale across time.  The

purpose of this paper was to compare the effectiveness of a MPCM to identify test speededness

with that of a MRM speededness algorithm for stabilizing a score scale on a reading

comprehension test comprised of testlets.  This study looked at the RCT over a four year period.

The results of this study largely replicated those of Wollack et al. (in press), in that

calibrating using responses only from examinees in the nonspeeded class greatly improved the

scale integrity:  The scale was more unidimensional, showed better stability of average standard

scores, and resulted in more drift-free items on which to equate forms.  In fact, the criteria we

used to define a drifting PCM item had to be altered because the likelihood ratio test failed to

identify a single nondrifting testlet between 1993 and 1994, when the total sample was used. 

Overall, using a likelihood ratio test for drift criterion, nonspeeded samples identified five-and-a-

half times more drift-free testlets using the PCM than did total samples.  Using the | Id | # .05

criterion, nonspeeded samples identified two-and-a-quarter times the number of drift-free testlets

for the total group.  Nonspeeded samples with the Rasch model identified over two-and-a-half

times more drift-free items than did total samples.  There were no noticeable differences between

the PCM and Rasch model with regards to scale stability measures.

Interestingly, few meaningful differences were observed between fitting the PCM and the

Rasch model to the data.  Patterns of unidimensionality, stability in average RCT scores, and

parameter drift were very similar for both models.  Also, classifications of examinees into

speeded or nonspeeded classifications were identical in the Rasch model and PCM 95% of the
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time.  Nevertheless, the PCM was still the more appropriate model for the data.  The RCT is

comprised of testlets, and as such, the within testlet items violated the local independence

assumption necessary to use the Rasch model.  

The results of the LID analyses were interesting and emphasize the importance of removing

test speededness effects from the data before subjecting it to analysis.  When the Rasch model

was fitted to all the data and Q3 statistics were computed, the pattern of statistics (see Table 4)

appeared to be counter-intuitive.  Q3 statistics for between-passage items were generally small,

suggesting that the items were essentially locally independent.  The magnitude of the Q3 statistics

increased with passage number, and the passages at the very end of the test had moderate,

positive Q3 statistics.  This pattern is consistent with what one would expect from a speeded test

where examinees responses to end-of-test questions were hurried and may not have accurately

reflected their ability levels.  The most noteworthy aspect of Table 4 is that the within-passage Q3

statistics were all very small.  It would have been reasonable to have stopped at this point and

conclude that all the LID was caused by test speededness and that, in spite of the testlet nature of

the RCT, the items appear sufficiently locally independent to allow use of the Rasch model if the

speededness effects were first removed.  However, this conclusion would have been made in

error.  In fact, when one removes the speeded examinees from the data, the structure of the

remaining dataset is markedly different.  The pattern among only the nonspeeded examinees

fitted with the Rasch model (Table 5) again showed no LID among between-passage items, but

this time showed substantial within-passage LID.  This pattern was still evident when parameter

estimates from nonspeeded examinees were used to compute and for all examinees. $θ P ( )i
$θ

This demonstrates an important reason for purifying the dataset of speeded examinees prior to
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performing calibration work:  The inclusion of speeded examinees presents a source of LID that

obscures the real pattern among the items, thereby making it difficult to select an appropriate

model.

The results of the Q3 analysis were also interesting in that they appear to shed light on the

point in the test where test speededness began to become a problem.  By examining Table 4, one

can see that all passages prior to passage 10 exhibit the same pattern:  low negative between-

passage statistics and low positive within-passage statistics.  Beginning with passage 10, this

pattern changed.  Q3 statistics in section C between one of the first nine passages and one of the

last two passages became bigger, and Q3 statistics in section B between passages 10 and 11

through 13 became positive and substantial.  Also, Q3 statistics within passages 10 - 13 were all

large and positive.  Although in this study ordinal constraints were placed upon only the pilot

testlet, in fact it appears as though performance on the final two testlets was affected by test

speededness.  

It was also interesting that the type of equating did not seem to affect score scale stability. 

In particular, it had been expected that pre-equating on the basis of the entire sample would result

in a systematically increasing RCT mean score because all items were systematically harder in

their pilot locations than they were when administered in operational locations.  However, no

discernable pattern was observed with respect to type of equating.  This is consistent with

Wollack et al. (in press) who also found no meaningful differences between pre- and post-

equating.

 Wollack et al. (in press) studied drift over 11 years, whereas this study looked at only 4

years.  Although studying drift over a longer time is desirable, it comes with certain drawbacks. 
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The amount of similarity in test items across years was much higher in this study.  The four year

period used here was selected because 100 percent of the operational items were common to the

test from the previous year (either as operational or pilot items), and very often in the same

locations.  In Wollack et al., the amount of similarity between RCT forms in adjacent years was

as little as one testlet with five items.  Because the number of common items between adjacent

forms was potentially so small, Wollack et al. defined “common item” as any item that had been

previously administered, even if it wasn’t administered on the immediately preceding form.  This

increased the number of “common items,” and was the only reasonable way to equate the 11

forms used.  It may not be the most appropriate way to view drift, however.

Another difference between Wollack et al. (in press) and this study is the way items were

equated and tested for scale drift.  Wollack et al. used iterative linking (Candell & Drasgow,

1988) through the test characteristic curve method (Stocking & Lord, 1983), and Lord’s chi-

square (Lord, 1980) to identify drifting items.  The Wollack et al. drift analyses were performed

as a chain of 11 independent analyses.  As they mentioned in their discussion, ideally, they would

have included all data into a single analysis in which all model parameters and all drift analyses

were simultaneously estimated.  This simultaneous solution would have the advantage of

minimizing estimation errors by including information from the entire variance-covariance item

matrix.  Unfortunately, with 11 years of data, this solution was too large.  However, this ideal

design was precisely the one used in this study.

The results of this study are important because they demonstrate that it is difficult to hold

together a scale for tests which are, to some degree, speeded.  The solution is to purify the

calibration dataset by systematically removing all examinees classified into a latent speeded
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class.  The rationale is that item behavior among the examinees in the nonspeeded class was

more stable over time than item behavior for all examinees.  Furthermore, item behavior for end-

of-test items in the nonspeeded class was a better predictor of how the same items would perform

for the entire group when moved into earlier positions in the test.  

Purifying datasets of speededness is particularly important for tests that use end-of-test

locations for piloting items or for tests on which an item’s location changes across forms. 

Locations at the end of the test tend to make items appear more difficult than locations at the

beginning or middle of the test.  Item location is normally a nuisance variable, contributing an

unintended source of variability.  The speededness model presented here provides one way to

address and reduce location effects (for another speededness model, see Yamamoto & Everson

(1997)).  As shown in this study, as well as those by Bolt et al. (2002) and Wollack et al. (in

press), an item’s behavior is much more stable within the nonspeeded group, regardless of that

item’s location, than it is within the total group.  Scale purification will result in more drift-free

items on which to equate, a more stable score scale, and ultimately, a more interpretable score.  

This study implemented a MPCM because it is the natural extension of the MRM used by

Bolt et al. (2002) and Wollack et al. (in press).  There exist several other item response models

which could have been used to analyze the data in this study.  Examples of item response models

available for scoring polytomous item responses include the PCM (Masters, 1982), the graded

response model (Samejima, 1969), and the nominal response model (Bock, 1972).  The testlet

model (Bradlow, Wainer, & Wang, 1999; Li & Cohen, 2003; Wainer, Bradlow, & Du, 2000) is

also available for accounting for local dependence among sets of dichotomously scored items. 

The effectiveness of these models for use in identifying test speededness is an area that should be

studied further.
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It is important to mention that test speededness effects, as modeled in this study, are

confounded with fatigue effects (Wollack et al., in press).  That is, it is impossible to know

whether examinees classified as speeded actually had insufficient time, or if their diminished

performance was attributable to fatigue.  This distinction is important because, while increasing

testing time can reduce speededness effects, it will also serve to increase fatigue effects. 

In addition, speededness effects in this study were confounded with content effects.  Because

ordinal constraints were applied only to the last testlet, it is possible that something relating to

the content of the final passage, rather than insufficient time, contributed to the poor performance

of examinees in the speeded class on the final testlet.  Had multiple testlets been used to

distinguish the classes, it would have been possible to tease apart those suffering from content

effects associated with the pilot passage and those suffering from speededness or fatigue.  

Finally, although the testlets used in this study were composed of sets of individually-scored

items associated with a common reading passage, the results of this study should generalize to

other testing situations for which the PCM is appropriate, such as for scoring constructed

response items or performance measures. 
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Table 1

Prior Distributions for MRM and MPCM

MRM Priors MPCM Priors

big ~ Normal(0, 1) *ig ~ Normal(0, 1)

$ikg ~ Normal(*ig, 1)

2jg ~ Normal(:g, 1) 2jg ~ Normal(:g, 1)

:g ~ Normal(0, 1) :g ~ Normal(0, 1)

cj ~ Bernoulli(B1, B2) cj ~ Bernoulli(B1, B2)

(B1, B2) ~ Dirichlet(0.5, 0.5) (B1, B2) ~ Dirichlet(0.5, 0.5)



Item vs. testlet scoring 42

Table 2

Tracking of Passage Locations for RCT

1993 1994 1995 1996

1 1 1

2 2 2 2

3

4

5 5 5 6

6

7 7 7 8

8 8 8 9

9 9

10 10 10 3

11 4

11 3 3 4

11 6 6 7

11 9 1

11 4

11 10

11 5

11
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Table 3

Proportion Correct for Speeded and Nonspeeded Classes

Average Item Score Proportion Correct
Nonspeeded Speeded Nonspeeded Speeded

Item Class Class Item Class Class
1 2.76 2.78 1 .85 .84
2 4.25 4.30 2 .54 .54
3 3.31 3.31 3 .65 .62

4 .72 .71
5 .88 .90
6 .72 .66

Items/Testlets with 7 .71 .69
Equality Constraints on 8 .69 .65
Item/Testlet Difficulty 9 .69 .68

10 .60 .60
11 .77 .78
12 .45 .37
13 .92 .91
14 .64 .65
15 .55 .55

4 3.92 3.70 17 .69 .62
5 3.80 3.57 19 .51 .43
6 2.89 2.66 21 .73 .69
7 3.79 3.41 23 .80 .69
8 3.37 2.75 25 .80 .76
9 3.09 2.11 27 .58 .54

10 3.16 1.69 29 .54 .48
Items/Testlets not 31 .47 .41

Included in 33 .44 .38
MRM and MPCM 35 .72 .64

analyses 37 .71 .59
39 .79 .66
41 .63 .48
43 .61 .40
45 .60 .37
47 .72 .48
49 .55 .33
51 .47 .23

11 4.31 1.06 53 .82 .20
Items/Testlets With 54 .74 .21

Ordinal Constraints on 55 .88 .10
Item/Testlet Difficulty 56 .60 .07

57 .70 .03
58 .66 .02
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Table 4

Average Between- and Within- Passage Q3 Statistics–Rasch Total Group

1 2 3 4 5 6 7 8 9 10 11 12 13

1 .03

2 .01 .04

3 .00 -.01 .01

4 .01 .00 .00 .02

5 .01 .01 .00 .00 .03

6 -.01 -.01 .00 -.01 -.01 .01

7 -.01 -.01 -.02 -.01 -.01 -.01 .02

8 -.03 -.03 -.03 -.03 -.02 -.03 -.01 .04

9 -.03 -.04 -.03 -.03 -.03 -.03 -.02 .00 .03

10 -.06 -.05 -.05 -.06 -.05 -.05 -.04 .00 .02 .11

11 -.07 -.06 -.05 -.06 -.04 -.06 -.06 -.03 .00 .07 .21

12 -.04 -.04 -.03 -.04 -.03 -.05 -.04 -.02 .00 .04 . .10

13 -.06 -.06 -.05 -.06 -.05 -.06 -.05 -.01 .02 .08 . . .16

Average Between-Passage Q3 Average Within-Passage Q3

A -.014 D .023

B .065 E .143

C -.039

Total -.023 Total .060
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Table 5

Average Between- and Within- Passage Q3 Statistics–Rasch Nonspeeded Group Only

1 2 3 4 5 6 7 8 9 10 11 12 13

1 .01

2 .00 .18

3 -.02 -.02 .20

4 -.01 -.01 -.01 .17

5 .00 .00 -.01 -.01 .21

6 -.02 -.02 -.01 -.02 -.02 .20

7 -.01 -.02 -.02 -.02 -.02 -.02 .17

8 -.03 -.03 -.03 -.02 -.01 -.02 -.02 .21

9 -.02 -.02 -.02 -.02 -.02 -.02 -.01 -.02 .20

10 -.04 -.03 -.03 -.04 -.03 -.03 -.03 -.01 -.01 .24

11 -.01 .00 -.01 -.01 -.02 -.02 -.02 -.02 -.02 -.01 .15

12 .00 .00 .00 -.02 -.02 -.03 -.02 -.02 -.01 -.02 . .17

13 -.01 -.02 -.02 -.02 -.02 -.02 -.01 -.02 -.01 .00 . . .17

Average Between-Passage Q3 Average Within-Passage Q3

A -.017 D .172

B -.010 E .183

C -.019

Total -.017 Total .175
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Table 6

Average Between- and Within- Passage Q3 Statistics–Rasch Total Group, Nonspeeded Class Statistics

1 2 3 4 5 6 7 8 9 10 11 12 13

1 .02

2 .01 .19

3 .00 -.01 .21

4 .00 .00 .00 .18

5 .01 .01 .00 .00 .22

6 -.01 -.01 .00 -.01 -.02 .21

7 -.01 -.01 -.02 -.01 -.01 -.02 .18

8 -.03 -.03 -.03 -.03 -.02 -.02 -.02 .23

9 -.03 -.04 -.03 -.03 -.03 -.03 -.02 .00 .22

10 -.06 -.05 -.05 -.06 -.04 -.05 -.04 .00 .01 .28

11 -.06 -.05 -.04 -.05 -.04 -.06 -.06 -.03 .00 .06 .34

12 .04 -.04 -.03 -.04 -.03 -.05 -.04 -.02 .00 .03 . .29

13 -.06 -.05 -.05 -.06 -.05 -.06 -.04 -.01 .02 .06 . . .30

Average Between-Passage Q3 Average Within-Passage Q3

A -.014 D .184

B .050 E .303

C -.035

Total -.022 Total .221
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Table 7
Comparison of Eigenvalues for Total and Nonspeeded Groups in PCM and Rasch Model

Partial Credit Model

Total Group Nonspeeded Group
Year 81 82 81 / 82 81 82 81 / 82

1993 4.67 (46.7%) .926 (9.3%) 5.04 4.78 (47.8%) .768 (7.7%) 6.22
1994 4.89 (48.9%) .948 (9.5%) 5.16 4.93 (49.3%) .732 (7.3%) 6.73
1995 4.81 (48.1%) .861 (8.6%) 5.59 4.86 (48.6%) .712 (7.1%) 6.83
1996 4.94 (49.4%) .861 (8.6%) 5.74 5.06 (50.6%) .713 (7.1%) 7.10

Rasch Model

Total Group Nonspeeded Group
Year 81 82 81 / 82 81 82 81 / 82

1993 12.31 (23.7%) 2.31 (4.4%) 5.33 12.15 (23.4%) 1.58 (3.0%) 7.69
1994 13.75 (25.9%) 2.45 (4.6%) 5.61 13.26 (25.0%) 1.67 (3.1%) 7.94
1995 12.82 (24.2%) 2.11 (3.2%) 6.08 12.64 (23.9%) 1.95 (3.7%) 6.48
1996 13.89 (26.2%) 2.33 (4.4%) 5.96 13.85 (26.1%) 1.75 (3.3%) 7.91
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Table 8

RCT Means and Standard Deviations, 1993 - 1996

Mean Standard Deviation

1993 1994 1995 1996 RMSD Bias 1993 1994 1995 1996 RMSD Bias

PCM

Pre-Equating

Total
 Group

500

527.4 525.1 508.1 22.0 20.2

100

109.6 110.3 105.6 8.7 8.5

NS
 Group 508.4 504.9 484.1 10.8 -0.9 119.6 119.9 116.6 18.8 18.7

Post-Equating

Total
 Group 506.3 517.0 494.4 11.0 5.9 119.5 116.6 98.6 14.8 11.6

NS
 Group 498.3 503.6 476.9 13.5 -7.1 120.0 120.2 113.9 18.3 18.0

Rasch
Model

Pre-Equating

Total
 Group

500

536.4 531.3 519.8 30.0 29.2

100

121.5 118.7 123.0 21.1 21.1

NS
 Group 507.5 511.3 495.7 8.2 4.8 121.8 119.1 122.8 21.3 21.2

Post-Equating

Total
 Group 509.4 517.0 507.0 11.9 11.1 122.0 119.6 122.6 21.4 21.4

NS
 Group 500.5 504.7 488.9 7.0 -2.0 121.5 119.6 122.3 21.2 21.1
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Table 9

Comparison of the number of nondrifting items

PCM

Total Group Nonspeeded Group

Year LR | Id | # .05 .05 < | Id  | # .10 | Id  | > .10 LR | Id  | # .05 .05 < | Id  | # .10 | Id  | > .10

93-94 0 1 6 3 4 6 1 3

94-95 1 5 3 2 5 7 2 1

95-96 1 2 4 4 2 5 2 3

Rasch Model

Total Group Nonspeeded Group

Year LR | d |# .15 .15 < | d  | # .30 | d  | > .30 LR | d  | # .15 .15 < | d  | # .30 | d  | > .30

93-94 6 10 21 21 29 31 13 8

94-95 16 20 23 10 37 41 8 3

95-96 9 11 26 16 15 25 15 13
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Table 10

Partial Credit Model Versus Rasch Model Classifications and Group Membership Correlations

1993 1994

rgmem(R), gmem(PCM) = .87 rgmem(R), gmem(PCM) = .95

Rasch Classifications Rasch Classifications
       SP       NS     Total        SP       NS     Total

SP 1638 199 1837 SP 1199 304 1503

NS 303 6379 6682 NS 34 3963 3997

Total 1941 6578 8519 Total 1233 4267 5500

1995 1996

rgmem(R), gmem(PCM) = .94 rgmem(R), gmem(PCM) = .91

Rasch Classificatons Rasch Classifications
       SP       NS     Total        SP       NS     Total

SP 1380 101 1481 SP 702 133 835

NS 178 5615 5793 NS 146 3517 3663

Total 1558 5716 7274 Total 848 3650 4498
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Figure 1

Average Absolute Differences for Various Testlet Information Functions

AAD # .05 AAD > .05

AAD = .019 AAD = .051

AAD = .033 AAD = .052

AAD = .042 AAD = .057

AAD = .045 AAD = .063

AAD = .049 AAD = .080
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Appendix A

 model 
{
# Form 934--equality constraints on operational items

  for (j in 1:N) {
   for (i in 1:T) {
          r[j,i]<-resp[j,i]

}}
 
  for (g in 1:G){  
  alpht[g]<-alph[g]

}

for (j in 1:N) {
for (i in 1:T) {

denom[j,i,1] <- 1
numer[j,i,1] <- 0
enumer[j,i,1] <- 1

}}

# Partial Credit Model
for (j in 1:N) {

for (i in 1:T) {
for (k in 2:mI[i]) {

numer[j,i,k] <- (theta[j]-step[gmem[j],i,k] + numer[j,i,k-1])
enumer[j,i,k] <- exp(numer[j,i,k])
denom[j,i,k] <- enumer[j,i,k] + denom[j,i,k-1]

}
denom2[j,i,1] <- denom[j,i,mI[i]]

}}

for (j in 1:N) {
for (i in 1:T) {

for (k in 1:mI[i]) {
p[j,i,k] <- enumer[j,i,k]/denom2[j,i,1]

}
 r[j,i]~dcat(p[j,i,1:mI[i]])

}
theta[j] ~ dnorm(mut[gmem[j]],1)
gmem[j] ~ dcat(pi[1:G])

}

 # Priors
 # Equality constraints
    for (i in 1:(T-1)){
    beta.pre[1,i]~dnorm(0.,1.)
   }

    for (i in 1:(T-1)){
          beta.pre[2,i]<-beta.pre[1,i]        

}

    beta.pre[1,T]~dnorm(0,1.)         

    beta.pre[2,T]~dnorm(0,1.) I(,beta.pre[1,T]) 

   for (i in 1:T){
       for (g in 1:G){

        beta[g,i]<-beta.pre[g,i]-mean(beta.pre[g,1:T])
   }}

for (i in 1:T) {
for (g in 1:G) {

b[g,i,1] <- 0
}}
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Appendix A, Cont’d.

   for (i in 1:T){
for (k in 2:(mI[i]-1)) {

          b[1,i,k]~dnorm(beta[1,i],1.)      
}}

for (i in 1:T){
b[1,i,mI[i]]  <- (mI[i]-1)*(beta[1,i])-sum(b[1,i,2:(mI[i]-1)])

}

for (k in 2:(mI[T]-1)) {
   b[2,T,k]~dnorm(beta[2,T],1.)      

}

b[2,T,mI[T]]  <- (mI[T]-1)*(beta[1,T])-sum(b[2,T,2:(mI[T]-1)])

for (i in 1:(T-1)){
for (k in 2:(mI[i])) {

b[2,i,k] <- b[1,i,k]
}}

for (i in 1:T){
for (k in 2:mI[i]){

for (g in 1:G){
        b.std[g,i,k]<-b[g,i,k]-mean(b[g,i,2:mI[i]])

}}}

for (i in 1:T) {
for (g in 1:G) {

b.std[g,i,1] <- 0
}}

for (i in 1:T){
for (k in 2:mI[i]){

for (g in 1:G){
step[g,i,k] <- b.std[g,i,k] + beta[g,i]

}}}

for (i in 1:T) {
for (g in 1:G) {

step[g,i,1] <- 0
}}

   pi[1:2]~ ddirch(alpht[1:2])
   mut[1]~ dnorm(0.,1.)
   mut[2]~ dnorm(0.,1.)

}

list(N=1500, T=4, G=2,alph=c(.5,.5),mI=c(6,7,6,7),
resp=structure(.Data=c(
3,5,5,7,
3,6,5,7,
.
.
.
3,5,2,2,
3,4,5,4), .Dim=c(1500,4)))


